Mengira hasil darab: a × b Congak

Banyak kaedah ini berhasil disebabkan oleh sifat penaburan.

Mendarab dengan 2 atau nombor kecil yang lain

Apabila satu nombor yang didarab adalah cukup kecil untuk didarab dengan mudah oleh mana-mana digit tunggal, hasil darabnya boleh dikira dengan mudah antara digit dengan digit dari kanan ke kiri. Ini khususnya mudah untuk pendaraban dengan 2 kerana digit bawa tidak boleh lebih dari 1.

Contohnya, untuk mengira 2 × 167: 2x7=14, jadi digit akhirnya ialah 4, dengan 1 dibawa dan ditambah pada 2x6=12 untuk mendapatkan 13, jadi digit seterusnya ialah 3 dengan 1 dibawa dan ditambah pada 2x1=2 untuk mendapatkan 3. Jadi hasil darabnya ialah 334.

Mendarab dengan 5

Untuk mendarab satu nombor dengan 5,

1. Pertama, darab nombor tersebut dengan 10, kemudian bahagikan hasilnya dengan 2.

Algoritma berikut ialah cara pantas untuk menghasilkan keputusan ini:

2. Tambahkan sifar pada bahagian kanan nombor kendalian pertama. (A.)

3. Kemudian, bermula dari angka paling kiri, bahagikan setiap digit dengan 2 (B) dan gabungkan semua hasilnya menjadi satu nombor baru; (jawapan dengan titik perpuluhan perlu dibundarkan menjadi nombor bulat).

CONTOH: Darabkan 176 dengan 5.      A. Tambahkan sifar pada 176 menjadikannya 1760.      B. Bahagikan setiap digit dengan 2 bermula dari kiri.           1. Bahagikan 1 dengan 2 = 0.5, dibundarkan kepada 0.            2. Bahagikan 7 dengan 2 = 3.5, dibundarkan kepada 3.           3. Bahagikan 6 dengan 2 = 34. Bahagikan 0 dengan 2 = 0

Gabungan nombor-nombor di atas menghasilkan nombor baru 0330. (Ini bukanlah jawapan akhir, tetapi satu anggaran pertama yang akan dilaras dalam langkah berikut:)

     C. Tambahkan 5 kepada nombor yang mengikut mana-mana angka tunggal di dalam nombor baru ini         (yang sebelum ia dibahagikan dengan 2, merupakan nombor ganjil);

CONTOH: 176 (Dalam tempat PERTAMA, KEDUA, KETIGA):

 1.Tempat PERTAMA ialah 1, yang merupakan angka ganjil.    Tambahkan 5 kepada nombor selepas tempat pertama dalam nombor baru (0330) iaitu 3; 3+5=8.           2.Tempat KEDUA ialah 7, juga angka ganjil.    Hasil dari langkah pertama (0830) akan bertambah dengan 5 juga, menjadi 0880. 
 3.Tempat KETIGA ialah 6, satu angka genap, jadi nombor akhir, 0 tidak akan berubah.    Jawapan akhir ialah 0880. 
 Sifar paling kiri boleh dibuang, meninggalkan 880. Jadi 176 didarab 5 bersamaan dengan 880.

Mendarab dengan 9

Oleh kerana 9 = 10 - 1, untuk mendarab dengan 9, darabkan nombor itu dengan 10 dan tolakkan nombor asal dari hasil ini. Contohnya, 9 × 27, ubahkan menjadi 10 × 27 = 270 ; jadi 9 × 27 = (270 - 27) = 243.

Menggunakan tangan: nombor 1-10 didarab dengan 9

Tandakan setiap jari (pada kedua-dua belah tangan) dengan nombor dari 1 hingga 10, dari kiri ke kanan. Simbol "|" dalam rajah berikut mewakili setiap jari yang diangkat, manakala tanda "-" mewakili jari yang dibengkokkan.

1 2 3 4 5 6 7 8 9 10| | | | |  | | | | |tangan kiri tangan kanan

Bengkokkan jari yang mewakili nombor yang akan didarab dengan sembilan

Contoh: 6 didarab dengan 9

| | | | |  - | | | |

Jari yang keenam dari kiri telah dibengkokkan. Ambil jumlah jari yang masih diangkat di sebelah kiri jari keenam dan gabungkannya dengan jumlah jari yang masih diangkat di sebelah kanan jari keenam untuk mendapatkan hasil darab.

Contoh: Terdapat 5 jari yang masih diangkat di sebelah kiri jari ke-6 dan 4 jari yang masih diangkat di sebelah kanan. Jadi 6 didarab dengan 9 = 54.

    5          4| | | | |  - | | | |

Mendarab dengan 10 (dan kuasa 10)

Untuk mendarab satu integer dengan 10; cuma tambahkan angka 0 pada hujung kanan nombor tersebut.

Untuk mendarab satu bukan integer dengan 10, cuma alihkan titik perpuluhan ke kanan satu digit.

Untuk algoritma asas 10, mendarab dengan 10n (n ialah satu integer), alihkan titik perpuluhan digit-digit n ke kanan. Jika n ialah nombor negatif, alihkan perpuluhan digit-digit |n| ke kiri.

Mendarab dengan 11

Untuk nombor digit tunggal, cuma buat pendua untuk nombor tersebut dalam digit "puluh", contohnya: 1 × 11 = 11, 2 × 11 = 22, sehingga 9 × 11 = 99.

Hasil darab 11 dengan mana-mana integer bukan sifar yang lebih besar boleh didapati dengan beberapa penambahan pada setiap digit-digitnya dari kanan ke kiri, dua pada satu masa.

Mulanya ambil digit "sa" pada pendarab dan letakkan pada hasil sementara. Kemudian, bermula dengan digit sa pada pendarab, tambah setiap digit dengan digit seterusnya ke kiri. Setiap hasil tambah 10 atau lebih akan membawa digit "puluh", yang akan sentiasa menjadi 1, dan bawanya ke penambahan seterusnya. Akhir sekali, salin digit paling kiri pendarab (nilai paling besar) ke depan (kiri sekali) hasil tersebut, tambah 1 yang dibawa ke hadapan jika perlu, untuk mendapat hasil darab akhir.

Dalam kes negatif 11, pendarab, atau kedua-duanya, letakkan tanda pada hasil darab seperti pendaraban biasa kedua-dua nombor.

Contoh langkah pengiraan untuk 759 × 11:

  1. Digit "sa" untuk pendarab, 9, diletakkan pada hasil sementara.
    • hasil: 9
  2. Tambah 5 + 9 = 14, jadi 4 diletakkan pada bahagian kiri hasil dan membawa digit "1" ke hadapan.
    • hasil: 49
  3. Tambah 7 + 5 = 12, kemudian tambah dengan 1 (yang dibawa dari pengiraan kedua) untuk dapatkan 13. Letakkan 3 di bahagian kiri hasil dan bawa 1 ke hadapan.
    • hasil: 349
  4. Tambah 1 yang dibawa ke hadapan pada digit tertinggi dalam pendarab tersebut, 7+1=8, dan salin pada hasil untuk medapatkan hasil akhir.
    • Hasil darab akhir untuk 759 × 11: 8349

Contoh lain

  • −54 × −11 = 5 5+4(9) 4 = 594
  • 999 × 11 = 9+1(10) 9+9+1(9) 9+9(8) 9 = 10989
    • Pengiraan 9+1 adalah digit paling tinggi nilainya.
  • −3478 × 11 = 3 3+4+1(8) 4+7+1(2) 7+8(5) 8 = −38258
  • 62473 × 11 = 6 6+2(8) 2+4+1(7) 4+7+1(2) 7+3(0) 3 = 687203

Kaedah lain ialah dengan cuma mendarab dengan nombor 10, dan tambah nombor asal (pendarab) pada hasil tersebut.

Contoh:

17 × 11

17 × 10 = 170 + 17 = 187

17 × 11 = 187

Mendarab 2 nombor antara 11 dan 19

Untuk mendarab dengan mudah 2 nombor antara 11 dan 19 dalam algoritma ringkas seperti berikut

Rumus:(10+a) × (10+b)100 + 10 * (a+b) + a*bContoh:17 * 16(10+7) × (10+6)100 + 10(7+6) + (7 × 6)100 + 10(13) + (42)=272

Mendarab sebarang nombor 2 digit

Untuk mendarab dengan mudah sebarang nombor 2 digit bersama dengan menggunakan algoritma ringkas adalah seperti berikut:

( 10 a + b ) ⋅ ( 10 c + d ) {\displaystyle (10a+b)\cdot (10c+d)} = 100 ( a ⋅ c ) + 10 ( b ⋅ c ) + 10 ( a ⋅ d ) + b ⋅ d {\displaystyle =100(a\cdot c)+10(b\cdot c)+10(a\cdot d)+b\cdot d}

Contoh

23 ⋅ 47 = {\displaystyle 23\cdot 47=}
 = [10(2) + 3]*[10(4) + 7] = 100(2×4) + 10(3×4) + 10(2×7) + (3×7) = 800 + 120 + 140 + 21 = 1081

Perlu diingat yang ini adalah sama dengan penambahan konvensional hasil darab separa, cuma ia dinyatakan kembali secara ringkas. Untuk meminimumkan jumlah elemen yang berada dalam memori, ia mungkin lebih mudah dengan melakukan penambahan hasil darab dari pendaraban "silang" dahulu, dan kemudian tambah 2 elemen yang lain:

( a ⋅ d + b ⋅ c ) ⋅ 10 {\displaystyle (a\cdot d+b\cdot c)\cdot 10} + b ⋅ d {\displaystyle +b\cdot d} + a ⋅ c ⋅ 100 {\displaystyle +a\cdot c\cdot 100}

i.e., sebagai contoh

[(2 × 7) + (3 × 4)] × 10(12+14) × 1026 × 10 = 260 + (b*d = 3 × 7) + (a*c*100 = 2 × 4 × 100)

akan menjadi mudah dengan menambah kemudian 21: 281 dan 800: 1081

Satu kaedah nemonik untuk mengingati pencongakan ini ialah FOIL. F bermaksud first (pertama), O bermaksud outer (luar), I bermaksud inner (dalam) dan L bermaksud last (akhir).

Sebagai contoh:

75 ⋅ 23 {\displaystyle 75\cdot 23}

dan

a b ⋅ c d {\displaystyle ab\cdot cd}

7 mewakili a, 5 mewakili b, 2 mewakili c dan 3 mewakili d.

Gunakan persamaan

a ⋅ c ⋅ 100 + ( a ⋅ d + b ⋅ c ) ⋅ 10 + b ⋅ d {\displaystyle a\cdot c\cdot 100+(a\cdot d+b\cdot c)\cdot 10+b\cdot d}

Persamaan ini adalah bersamaan dengan mana-mana nombor dalam asas 10 dengan tempat digit ratus, puluh dan sa.FOIL boleh juga dilihat sebagai satu nombor, dengan F adalah ratus, OI adalah puluh dan L adalah sa.

a ⋅ c {\displaystyle a\cdot c} adalah hasil darab antara 2 digit pertama (paling kiri) dalam setiap dua nombor; F.

( a ⋅ d + b ⋅ c ) {\displaystyle (a\cdot d+b\cdot c)} adalah penambahan hasil darab antara digit luar (digit paling kiri dan paling kanan) dan digit dalam; OI.

b ⋅ d {\displaystyle b\cdot d} adalah hasil darab digit akhir (paling kiri) untuk kedua-dua nombor; L.

Menggunakan tangan: 6–10 didarab dengan nombor 6–10

Teknik ini membenarkan nombor dari 6 hingga 10 didarab dengan nombor lain dari 6 hingga 10.

Tentukan 6 kepada jari kelingking, 7 kepada jari manis, 8 kepada jari tengah, 9 kepada jari telunjuk, dan 10 kepada ibu jari. Sentuh kedua - dua jari yang mewakili dua nombor yang hendak didarab. Titik sentuh antara dua jari dan semua jari di bawah berada dalam seksyen "bawah", dan kesemua jari di atas 2 jari yang bersentuhan berada dalam seksyen "atas". Sebagai contoh, 6 × 9 akan kelihatan seperti ini:

      -10--      --9--      --8--  (atas)-10-- --7--====================--9-- --6--  jari telunjuk kiri dan jari kelingking kanan sedang bersentuhan--8--        (bawah)--7-- --6--   (9  ×  6)
-10-- -10----9-- --9----8-- --8----7-- --7----6-- --6--

Berikut adalah contoh-contohnya:

  • 9 × 6

atas:

      -10--      --9--      --8---10-- --7--

bawah:

--9-- --6----8-- --7-- --6--  

- 5 jari di bawah mewakili 5 puluh- 4 jari di atas ke kanan (4)- 1 jari di atas ke kiri (1)

Hasilnya: 9 × 6 = 50 + 4 × 1 = 54

  • 6 × 8

atas:

-10----9-- --8-- -10----7-- --9--

bawah:

--6-- --8--      --7--      --6--     

- 4 jari di bawah mewakili 4 puluh- 2 jari di atas ke kanan- 4 jari di atas ke kiri

Hasilnya: 6 × 8 = 40 + 2 × 4 = 48

Bagaimana ia dilakukan: setiap jari mewakili satu nombor (antara 6 dan 10). Sentuh kedua-dua jari yang mewakili nombor yang hendak didarab (x dan y). Jari-jari di "bawah" memberikan nombor dalam puluh, iaitu (x − 5) + (y − 5). Digit di bahagian atas kiri memberikan (10 − x) dan di bahagian atas kanan memberikan (10 − y), membawa kepada [(x − 5) + (y − 5)] × 10 + (10 − x) × (10 − y) = x × y.

Menggunakan nombor kuasa dua

Hasil darab antara nombor-nombor kecil boleh dikira dengan menggunakan integer kuasa dua; sebagai contoh, untuk mengira 13 × 17, 15 sebagai purata kepada kedua-dua faktor boleh diambil, dan fikirkannya sebagai (15 − 2) × (15 + 2), atau 15² − 2². Dengan mengetahui 15² adalah 225 dan 2² adalah 4, penolakan mudah menunjukkan yang 225 − 4 = 221, yang merupakan hasil darab yang dikehendaki.

Kaedah ini memerlukan pengetahuan beberapa nombor kuasa dua:

  • 12 = 1
  • 22 = 4
  • 32 = 9
  • 42 = 16
  • 52 = 25
  • 62 = 36
  • 72 = 49
  • 82 = 64
  • 92 = 81
  • 102 = 100
  • 112 = 121
  • 122 = 144
  • 132 = 169
  • 142 = 196
  • 152 = 225
  • 162 = 256
  • 172 = 289
  • 182 = 324
  • 192 = 361
  • 202 = 400
  • 212 = 441
  • 222 = 484
  • 232 = 529
  • 242 = 576
  • 252 = 625
  • 262 = 676
  • 272 = 729
  • 282 = 784
  • 292 = 841
  • 302 = 900

Mengkuasa duakan nombor

Ia mungkin berguna juga untuk mengetahui yang perbezaan anatara dua nombor kuasa dua yang berturutan adalah penambahan punca kuasa dua untuk keduanya. Jadi, jika anda sudah mengetahui yang 12 × 12 = 144 dan mahu mengetahui 13 × 13, kira x - 144 = 12 + 13, jadi x=12 + 13 + 144, jadi x=169.

Ini kerana (x + 1)2 − x2 = x2 + 2x + 1 − x2 = x + (x + 1)

x2 = (x − 1)2 + (2x − 1)

Kuasa dua nombor di bawah 50

Katakan kita perlu mengkuasa duakan satu nombor x di bawah 50. Nombor ini boleh dinyatakan sebagai x = 50 − n, dan x2 adalah bersamaan dengan

=(50−n)2=(50−n)2(50−n)2= 502 − 100n + n2= 2500 - 100n + n2

Contoh; mengkuasa duakan 48 yang bersamaan dengan (50 - 2)

=2500 - 100(2) + 22=2304

Untuk nombor yang lebih besar dari 50 (x = 50 + n), gantikan - 100n dengan + 100n.

Kuasa dua nombor yang berakhir dengan 5

    1. Ambil digit sebelum lima: abc5, a, b, dan c adalah digit-digit
    2. Darab nombor ini dengan dirinya dan positif satu: abc(abc + 1)
    3. Ambil hasil di atas dan letakkan 25 di hujung kanannya.
    • Contoh: 85 × 85
      1. 8
      2. 8 × 9 = 72
      3. Jadi, 852 = 7,225
    • Contoh: 1252
      1. 12
      2. 12 × 13 = 156
      3. So, 1252 = 15,625
    • Penjelasan Matematik
      • (10x + 5)2 = 100x(x + 1) + 25
      • (10x + 5)(10x + 5) = 100(x2 + x) + 25
      • 100x2 + 100x + 25 = 100x2 + 100x + 25

Kuasa dua integer dari 26 hingga 75

Kaedah ini memerlukan penghafalan semua kuasa dua nombor dari 1 hingga 25.

Kuasa dua n dijelaskan dalam rumus berikut

(50 − n)2 + 100(n − 25)

Sebagai contoh, kuasa dua untuk 62 ialah:

(−12)2 + [(62-25) × 100]= 144 + 3,700= 3,844

Kuasa dua integer dari 76 hingga 99

Kaedah ini memerlukan penghafalan kuasa dua nombor dari 1 hingga 25.

Kuasa dua n dijelaskan dalam rumus berikut.

(100 − n)2 + 100(100 − 2(100 − n))

Sebagai contoh, kuasa dua untuk 93 ialah:

72 + 100(100 − 2(7))= 49 + 100 × 86= 49 + 8,600= 8,649

Untuk melihatnya dari sudut yang lain:

932 = ? (ialah −7 dari 100)93 − 7 = 86 (ini memberikan 2 digit pertama)(−7)2 = 49 (ini merupakan 2 digit seterusnya)932 = 8649

Contoh yang lain:

822 = ? (ialah -18 dari 100)82 - 18 = 64 (dua digit pertama)(-18)2 = 324 (dua digit kedua. 3 perlu dibawa ke hadapan)82² = 6724

Kuasa dua untuk sebarang nombor

Ambil satu nombor yang diberi, dan tambah dan tolak satu nilai darinya untuk memudahkannya didarab. Contoh:

4922

492 adalah hampir dengan 500, yang mudah untuk didarab. Tambah dan tolak 8 (perbezaan antara 500 dan 492) untuk mendapatkan

492 -> 484, 500

Darabkan kedua-dua nombor untuk mendapatkan 242,000 (ini boleh dilakukan dengan cekap dengan mendarab 484 dengan 1000=484,000 dan bahagikannya dengan 2). Akhir sekali, tambah perbezaan (8) yang dikuasa duakan (82 = 64) pada hasil di atas:

4922 = 242,064

Kuasa dua sebarang integer 2 digit

Kaedah ini memerlukan penghafalan nombor kuasa dua dari 1 hingga 9.

Kuasa dua mn yang merupakan satu integer dua digit, boleh dikira dengan rumus berikut

10 × m(mn + n) + n²

Contoh untul 23²:

232= 10 × 2(23 + 3) + 3²= 10 × 2(26) + 9= 520 + 9= 529

Jadi 232 = 529.